### **Maximising Nitrogen Fixation in Grain Legumes**

#### Nikki Seymour



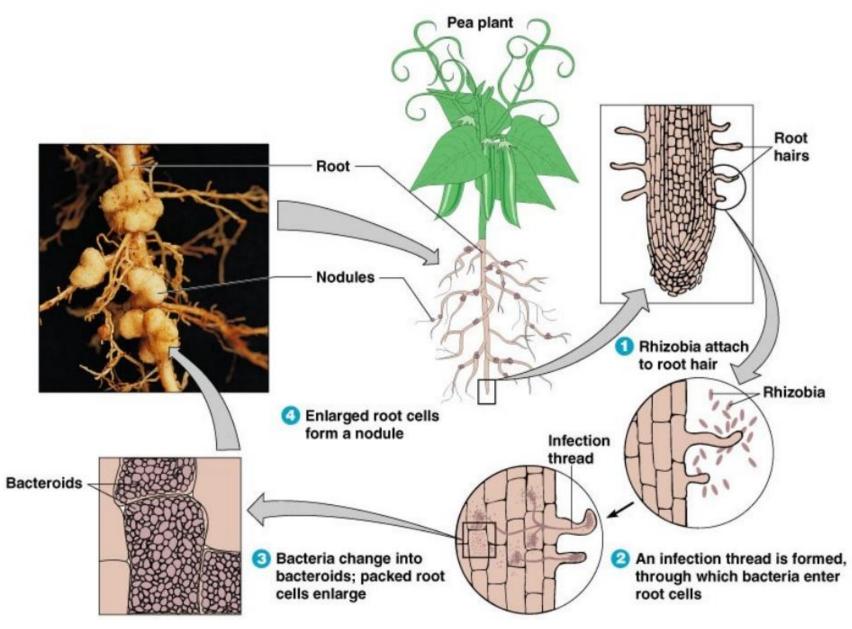
## N benefits of legumes

- Mineral N is conserved in soil during the legume growth
- Addition of N-rich residues following the legume harvest
- Function of crop N fixation capacity and dry matter production
- Amount varies with site, season and crop management



## Maximising N fixation

- ✓ Getting inoculation right
- Optimising plant nutrition and agronomy
- ✓ Reducing available nitrogen in soil




## What are Rhizobia?



- Rhizobia are bacteria that live in the soil, on plant roots and in legume nodules
- Form a symbiotic relationship with plants
- Only fix nitrogen when inside a legume nodule
- There are many species and strains of rhizobia
- They are host specific
- Require nutrition, water and aeration for growth
- Are killed by heat, dessication, pH extremes and toxic chemicals

## Formation of a Root Nodule



## What are Inoculants?

- prepared cultures of rhizobia protected in carriers
- to supply selected strains in large numbers to the roots soon after germination

#### Several different formulations:

- Moist peat
- Granules (peat, bentonite clay, attapulgite clay)
- Liquids
- Freeze dried



## Inoculant Groups

TABLE 1 Examples of legume inoculant groups used in Australian agriculture and their rhizobia. Currently, 39 different legume inoculants are manufactured in Australia, covering about 100 legume species

| Rhizobia                             | Commercial inoculant group | Legumes nodulated              |  |
|--------------------------------------|----------------------------|--------------------------------|--|
| Cinarhizabium eno                    | AL                         | Lucerne, strand and disc medic |  |
| Sinorhizobium spp.                   | AM                         | All other annual medics        |  |
| Dhizohium loguminogorum hu trifelii  | В                          | Perennial clovers              |  |
| Rhizobium leguminosarum bv. trifolii | C                          | Most annual clovers            |  |
| Bradyrhizobium spp.                  | G <sup>1</sup>             | Lupin, serradella              |  |
|                                      | S1                         | Serradella, lupin              |  |
| Mesorhizobium ciceri                 | N                          | Chickpea                       |  |
| Dhizahium laguminaganum ku ulalag    | E <sup>2</sup>             | Field pea and vetch            |  |
| Rhizobium leguminosarum bv. viciae   | F <sup>2</sup>             | Faba bean and lentil           |  |
| Bradyrhizobium japonicum             | Н                          | Soybean                        |  |
| Bradyrhizobium spp.                  | 1                          | Cowpea, mungbean               |  |

1 Both inoculant groups G and S can be used for lupin and serradella

2 Although group E is recommended for pea/vetch and group F for faba bean/lentil, if required group E can also be used for faba bean/lentil and group F used for pea/vetch

| Inoculant group                    | Host Plant - Common Name                                                                                          |     | ile N™<br>eat | EasyRhiz | EasyRhiz™<br>Protectant |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|---------------|----------|-------------------------|
|                                    | Pack size                                                                                                         | Std | Jumbo         | Vial     | Foil                    |
| STRAIN                             | Seed treated per pack→                                                                                            | kg  | kg            | kg       | (powder                 |
| AL, "Lucerne" (RRI128)             | Lucerne, Strand medic, Disc medic                                                                                 | 25  | 125           | 100      | 100g                    |
| AM, "Medic" (WSM1115)              | Barrol modic, Burr modic, Spail modic, Sphere modic, Gama                                                         |     | 250           | 200      | 250g                    |
| B, "White clover" (TA1)            | White clover, Red clover, Strawberry clover, Alsike clover,                                                       |     | 125           | 100      | 100g                    |
| C, "Sub clover"                    | Crimson clover, Cupped clover, Helmet clover, Purple clover,<br>Rose clover, Sub clover                           |     | 250           | 200      | 250g                    |
| (WSM1325)                          | Arrowleaf clover, Balansa clover, Gland clover, Persian                                                           | 25  | 125           | 100      | 250g                    |
| E, "Pea" (su 303)                  | Field pea, Grass Pea, Common vetch or Tare, Bitter vetch,<br>Lathyrus, Purple vetch, Pea, Woolly pod vetch        |     | 500           | 500      | 250g                    |
| F, "Faba" (WSM1455)                | Faba, Tick or Broad bean                                                                                          |     | 500           | 500      | 250g                    |
| an an server in the second servers | Lentil                                                                                                            |     | 250           | 250      | 250g                    |
| G, "Lupin" (WU425)                 | All lupin                                                                                                         | -   | 500           | 500      | 250g                    |
| H, "Soy" (CB1809)                  | Soybean                                                                                                           | 100 | 500           | 500      | 250g                    |
| I, "Mung Bean" (CB1015)            | Cowpea, Mung bean, Moth bean, Dune bean, Rice bean,<br>Snake bean, Creeping vigna                                 | 100 | -             | 500      | 250g                    |
| J, "Lab Lab" (CB1024)              | Dolichos lablab, Pigeon pea, Hyacinth bean,                                                                       | 100 | -             | 500      | 250g                    |
| J, Lab Lab (CB1024)                | Perennial horse gram, (Axillaris)                                                                                 | 50  |               | 250      | 250g                    |
| e<br>Antonio antonio               | Butterfly pea, Atro, Tropical kudzu, Puero,                                                                       |     | -             | 200      | 250g                    |
| M, "Siratro" (CB756)               | Glycine, Siratro, Jack bean, Calopo, Gambia pea, Phasey<br>bean, Velvet bean, Banana bean, Wing bean or Goa, Wynn |     | 12            | 100      | 250g                    |
| N, "Chickpea" (CC1192)             | All Chickpea                                                                                                      |     | 500           | 500      | 250g                    |
| P, "Peanut" (NC92)                 | Peanut or Groundnut                                                                                               |     | -             | 500      | 250g                    |
| S, Serradella (WSM 471)            | All Serradella                                                                                                    | 50  | 250           | 200      | 250g                    |
|                                    | Special Inoculants                                                                                                |     |               |          |                         |
| 5G1B                               | Adzuki bean                                                                                                       |     | -             | 200      | 250g                    |
| WSM1497                            | Biserrula                                                                                                         |     |               | 50       | 100g                    |
| SU343                              | Birdsfoot trefoil (Lotus corniculatus)                                                                            |     |               | 25       | 100g                    |
| CB1717                             | Burgundy bean                                                                                                     |     | -             | 100      | 100g                    |
| CC283b                             | Caucasian (Kura) clover                                                                                           |     |               | 50       | 100g                    |
| CB1923                             | Centro, Centurion                                                                                                 |     | - 6 - 2       | 200      | 250g                    |
| CB3126                             | Desmanthus                                                                                                        |     | -             | 100      | 250g                    |
|                                    | Leucaena                                                                                                          | -   |               | 250      | 250g                    |
| CB627                              | Desmodium                                                                                                         | 1   | -             | 50       | 100g                    |
| SU277                              | Fenugreek                                                                                                         | 5   | -             | 200      | 250g                    |
| CC511                              | French or Common bean, Navy, Kidney, Dry, Lima beans                                                              |     | -             | 250      | 250g                    |
| CB3035                             | Guar or Cluster bean                                                                                              |     | 124           | 250      | 250g                    |
| CB2312                             | Jointvetch, Aeschynomene                                                                                          |     | -             | 100      | 100g                    |
| CB782                              | Kenya white clover (Trifolium semipilosum)                                                                        | 1   | -             | 50       | 100g                    |
| CB376                              | Lotononis                                                                                                         |     | -             | 25       | 100g                    |
| CC829 ( Lotus )                    | Lotus, Lotus pedunculatus                                                                                         | 513 | -             | 25       | 100g                    |
| CIAT3101                           | Pinto peanut                                                                                                      |     |               | 250      | 250g                    |
| CC1099                             | Sainfoin                                                                                                          |     |               | 100      | 100g                    |
| CB1650                             | Stylo - Caribbean stylo (Stylosanthes hamata)                                                                     |     | -             | 50       | 100g                    |
| CB3481                             | Stylo - Caatinga stylo (Stylosanthes seabrana)                                                                    |     | -             | 50       | 100g                    |
| CB3401                             | Stylo - All other Stylo (Stylosanthes seabrana)                                                                   |     | -             | 50       | 100g                    |
| WSM 1592                           | Sulla                                                                                                             |     | -             | 100      | 100g                    |
| VV JIVI 1JJZ                       | Julia                                                                                                             |     | 1.57          | 25       | 100g                    |

Source: New Edge Microbials

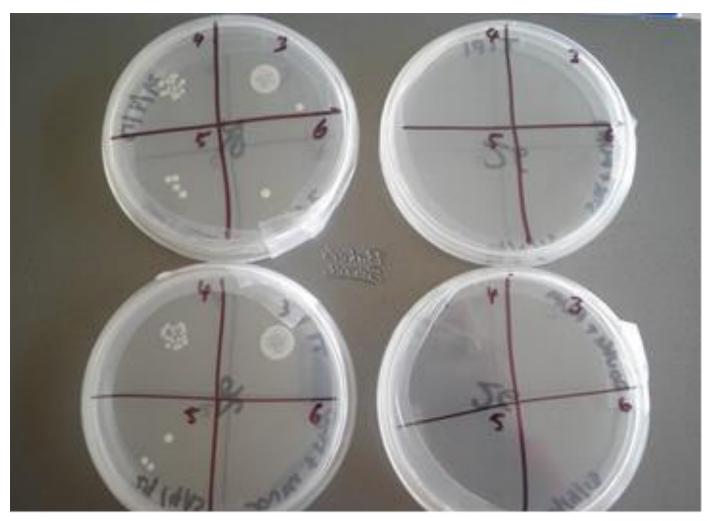
## How to handle inoculants

- •Do keep them cool
- Don't freeze them
- •Do transport them in esky, styrofoam boxes
- Don't leave them on the dash of the ute
- •Do check the quality of batch be aware of Green Tick Logo
- Don't use out of date stock
- Don't store with chemicals, fertilisers



## Be aware of...

- Toxicity of micronutrients, particularly Zn, Cu, Mo or Mg
- Do not mix with fungicides such as Sumisclex or Rovral
- Do not mix with herbicides such as MCPA, 2,4-D and Dinseb
- Do not mix with insecticides containing endosulfan, dimethoate, omethoate or carbofuran
- Plant into moist, cool soil
- Ensure equipment is clean
- Compatibility and reduced survival times with seed applied fungicides


#### Rhizobia and fertilisers don't mix Case study at Inverell, NSW



#### 'Old' soybean land

'New' soybean land

#### Laboratory assay -Compatibility of soybean rhizobia inoculum (strain CB1809) with the liquid fertiliser



## Seed treatments and Inoculants

TABLE 5.4 Compatibility of different rhizobia groups with seed-applied fungicides. Information sourced from commercial product information guides (Becker Underwood and Novozymes)

| Inoculant group / crop | Fungicide type                     | Planting window of<br>inoculated seed |  |  |
|------------------------|------------------------------------|---------------------------------------|--|--|
| E – pea, vetch         | P-Pickle T                         | 6 hours                               |  |  |
|                        | Gaucho® 600 FL                     | 4 hours                               |  |  |
| F – faba bean, lentil  | Gaucho® 600 FL                     | 24 hours                              |  |  |
|                        | P-Pickle T                         | 24 hours                              |  |  |
|                        | Thiram                             | Compatibility not known               |  |  |
| G – Iupin              | Rovral                             | 6 hours                               |  |  |
|                        | Thiram                             | 24 hours                              |  |  |
| H – soybean            | not compatible with seed dressings |                                       |  |  |
| N – chickpea           | P-Pickle T                         | 6 hours                               |  |  |
|                        | Thiram                             | 6 hours                               |  |  |
|                        | Apron® XL 350 6 hours              | 6 hours                               |  |  |
|                        | Gaucho® 600 FL                     | 6 hours                               |  |  |
| P – peanut             | not compatible with seed dressings |                                       |  |  |

## Follow up in the paddock

- To ensure inoculation has been effective check plants in the paddock
- Assess nodulation 6 weeks after planting
- - remove plants and soil to a depth of 10-15cm
- carefully wash soil from roots in bucket of water
- - compare against nodule scores
- Effective nodules will be pink when cut, they will be fixing nitrogen
- Nodules that are white or green, are not fixing N



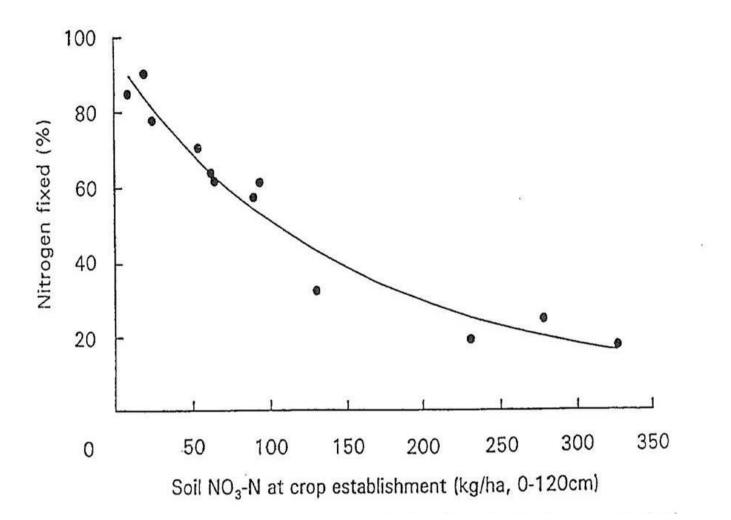
## Estimated average amounts of N fixed by crop legumes in Australia

| Legume    | %N fixed | Shoot dry<br>matter<br>(t/ha) | Total crop<br>N (kg/ha) | Total N<br>fixed <sup>1</sup><br>(kg/ha) |
|-----------|----------|-------------------------------|-------------------------|------------------------------------------|
| Lupin     | 75       | 5.0                           | 176                     | 130                                      |
| Реа       | 66       | 4.8                           | 162                     | 105                                      |
| Faba bean | 65       | 4.3                           | 172                     | 110                                      |
| Lentil    | 60       | 2.6                           | 96                      | 58                                       |
| Soybean   | 48       | 10.8                          | 373                     | 180                                      |
| Chickpea  | 41       | 5.0                           | 170                     | 70                                       |
| Peanut    | 36       | 6.8                           | 268                     | 95                                       |
| Mungbean  | 31       | 3.5                           | 109                     | 34                                       |
| Navy bean | 20       | 4.2                           | 148                     | 30                                       |

<sup>1</sup> Total N fixed = %N fixed x total crop N; Data sourced primarily from Unkovich et al 2010 And on p. 47 of 'Inoculating Legumes: a practical guide'

## Maximising N fixation

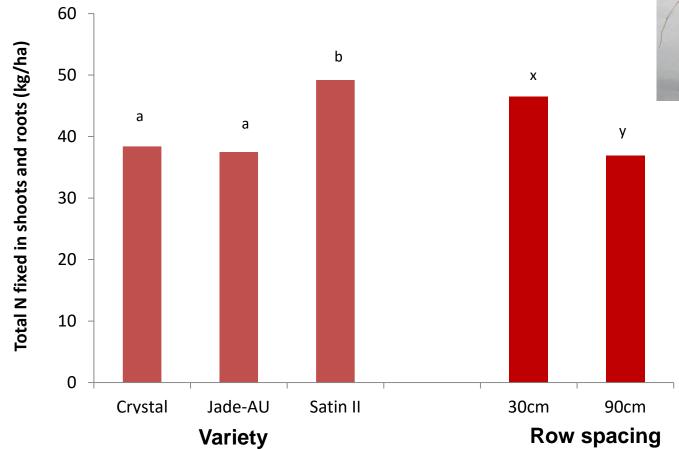
- The amount of N fixed by a pulse crop is largely influenced by how well that crop grows. More crop biomass = more N fixed by that crop, provided it is well nodulated.
- The amount of N fixed by a legume does not equal the amount available for the next crop. N is removed in the harvested grain and that N remaining in the crop residue then needs to be mineralised by microbial activity before it is available to the next crop.
- High soil N levels can significantly reduce N fixation.
- Sowing at the optimum time for maximum crop biomass leads to greater amounts of N fixed.


#### Soybean variety trial, Bundaberg

| Variety! | Biomass (t/ha) | %Ndfa | N fixed (kg/ha) |            |
|----------|----------------|-------|-----------------|------------|
| A6785    | 9.4            | 86.3  | 307             |            |
| Bunya    | 7              | 77.4  | 218             |            |
| Eagle    | 9.3            | 81.1  | 262             |            |
| Fernside | 7.8            | 85    | 225             |            |
| H173b-5  | 9.6            | 83    | 260             |            |
| K173-19  | 8.9            | 80.6  | 257             |            |
| M085-2   | 9              | 93.9  | 314             |            |
| M087-2   | 8              | 80    | 239             |            |
| M087-6   | 8.7            | 91.2  | 292             |            |
| M103-17  | 9.9            | 98    | 322             |            |
| M103-22  | 9.3            | 76.1  | 255             |            |
| M103-3   | 8.8            | 92.6  | 322             |            |
| N122B-10 | 8.3            | 89.8  | 282             |            |
| N189-9   | 9              | 86.9  | 284             |            |
| NF246-64 | 7.7            | 89.6  | 298 🛶           | Richmond   |
| NK55C-32 | 9.9            | 90.3  | 312 🛶           | Hayman     |
| P079A-17 | 9.4            | 80.4  | 237             | indyindi   |
| P079A-19 | 9.3            | 86.7  | 268             |            |
| S215B-53 | 9.2            | 91.1  | 314             |            |
| Warrigal | 9              | 91.4  | 299             |            |
| Lsd (5%) | 1.1            | ns    | ns              | Department |

© State of Queensland 2015

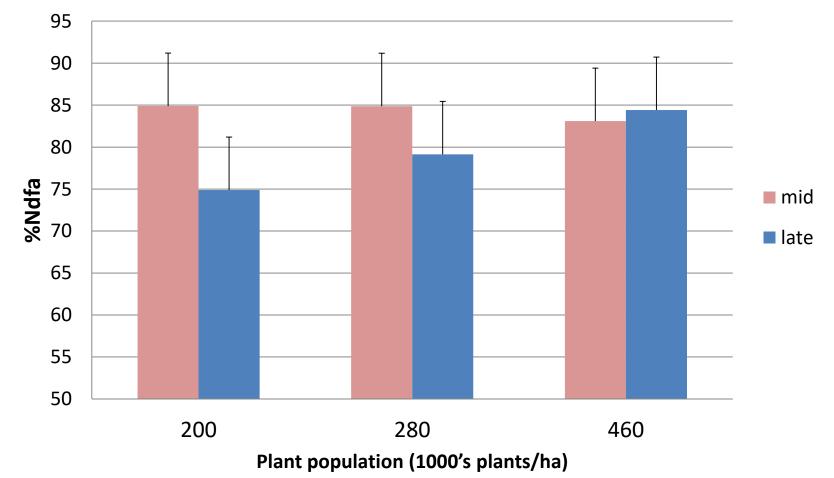
Department of Agriculture and Fisheries


#### N fixation decreases as soil nitrate increases

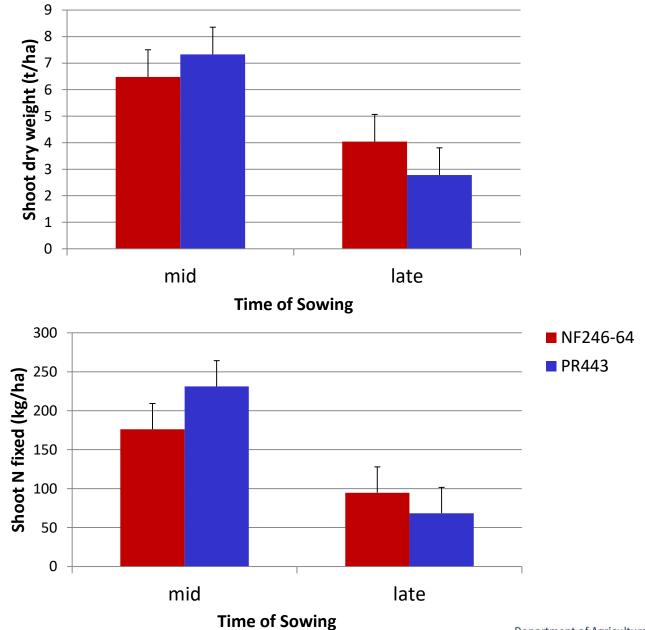


Doughton et al. 1993

© State of Queensland 2015

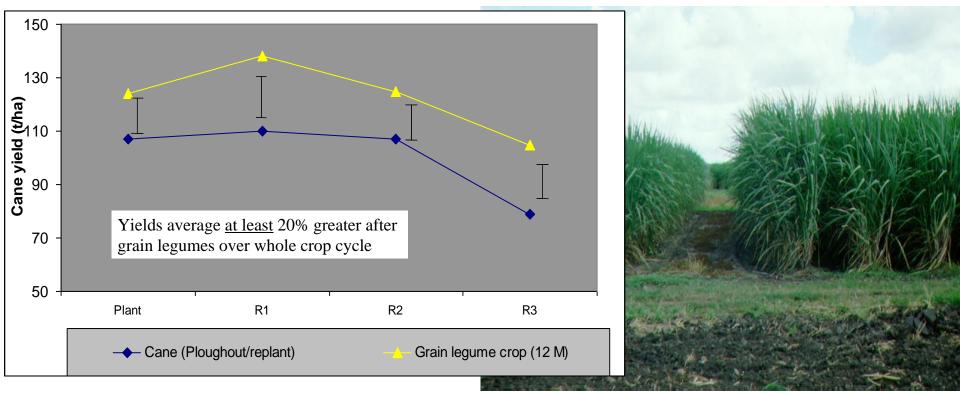

#### **Mungbean N fixation**






#### Soybean, Grafton

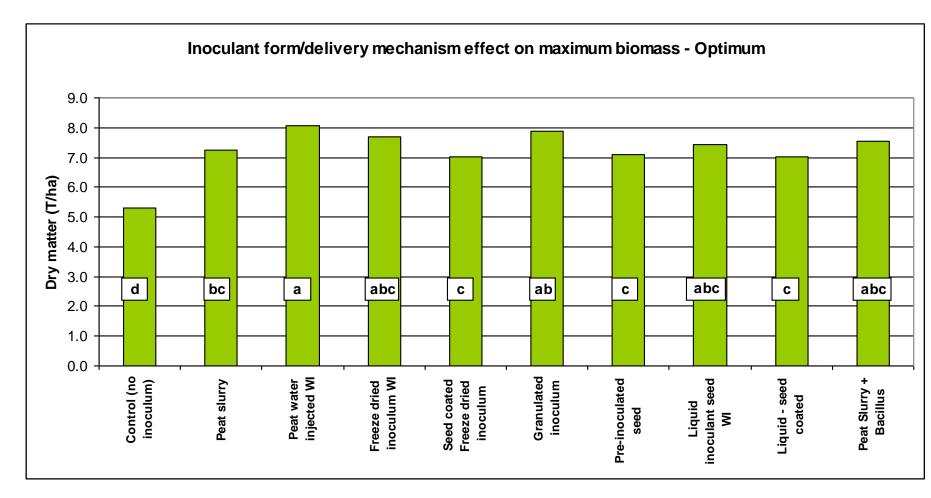





Soybean, Grafton



## Legume breaks in sugarcane farming systems


- 20% yield increase of cane after legume cf. continuous cane
- N benefit to plant cane crop
- •Suppression of some key pathogens (soil C/N balance important)
- •Advantages are greatest when legumes are combined with minimum/zero tillage and controlled traffic



# Inoculation failures in coastal farming systems



#### Soybean Dry matter at mid-pod fill



## Summary

- Get inoculation right
  Rhizobia need to be kept alive
- Get the agronomy of crop right
  - Narrower row spacing at same population can increase N fixation
- Get the nutrition of the crop right
  - Healthier the crop the more N fixed
  - N fertiliser not necessary

